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It is well known that the virial coefficients of the pressure of thermodynamic 
systems can be represented in terms of graphs. The existing graph expansions 
are compared with a new one, the overlap graph expansion. The merits of 
overlap graphs in general and especially for hard disks and spheres are dis- 
cussed. 
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1. INTRODUCTION 

If the pressure of a real gas is expanded in powers of the density, the 
corresponding coefficients are called virial coefficients. They consist of 
cluster integrals which may be represented by graphs. (0 The expansion in 
so-called Mayer graphs or star graphs is well known. (2'3) Ree and 
Hoover (4,s) introduced the modified star graphs or Ree-Hoover (RH) 
graphs. This modification simplified the graph expansion and enabled Ree 
and Hoover to evaluate the sixth and seventh virial coefficients for hard 
disks and spheres. In the present paper, a further simplification will be 
investigated which leads to a new graph expansion of virial coefficients, the 
"overlap graph expansion." Throughout the paper, the expressions clusters, 
(cluster) integrals, and graphs will be regarded as synonymous words. 

We assume that the potential energy U can be represented as the sum 
of pairwise interactions, 

U = ~ u~j, u~ = u(rq) (1) 
i < j  

the pair interaction being only a function of the distance r,j. Furthermore, 
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we abbreviate the Boltzmann factor in the following way: 

k .=  1 + f iy=exp(-uo. /kT)  (2) 

f j  being the Mayer f function, j~. the modified f function. (4) Then, the 
configurational partition function for a system of N identical molecules can 
be written as 

Qu[ V] = fv" " " fvdridr2 " " " dru ['[ D 
i<j 

i<j 

Expanding the product I-I(1 +f~j) in products of f functions yields the 
deviation from the ideal gas wherefj = 0. Since we are interested in systems 
with high N, we will neglect surface effects (at the boundary of the volume 
V). Thus, the integration over r I in (3) yields just the factor V, and we 
assume in the following that molecule 1 is located at the origin. The 
pressure P follows from the knowledge of Qu[V]: 

P _ 1 OQN[ g] N,T kT QN [ V] 0 V 

= - -  1 2 N i ( N ) ( v )  (4) 

For symmetry reasons, 

;dr2-'' dr N I - I f i j :  ( l~) f  dr2. �9 �9 drNf l2= (N2)vN-2f dr2fl2 

Furthermore, the approximation 

0 
f dr2 fi2 = 0 

has been used due to the neglect of surface effects. The full expansion in 
the number density 0 = ( N / V )  yields the virial series 

P -- 1 + ~ Bn(N)p n-' (5a) 
O kT ,=2 

(thermodynamic limit)= 1 + ~'~ B,O"-t (5b) P 
pkT ~ n=2 

The B,(N) are number dependent. The additional dependence on T has 
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been suppressed as in the cases fj, ~, and QN[ V]. From (4) it follows that 

i B 1 ~ /d r  2 f12 (6) B2(N ) = ( l - N -  ) 2, B 2 = -  

Extending (4) to lower order of V, B, can be obtained (n/> 2) as a function 
of cluster integrals (2) like fdr2f12. Deviations from the thermodynamic 
limit are twofold: First, the N dependence comes in which is independent 
of the shape of the volume, of. (5a) and (6). This correction is included in 
(4) and is well known. (6) The second correction (due to the volume 
dependence of the cluster integrals) is much more complicated (7'8) and will 
be considered again in Section 5. 

2. MAYER GRAPHS 

Now we turn to the B n which are valid in the thermodynamic limit. 
The Mayer cluster integrals occurring in Bn can be represented as graphs 
with n corners(l'3); see Fig. 1. Each corner corresponds to a variable. 
Variables represented by black circles are integrated over; the white circle 
indicates an arbitrary but fixed location (e.g., of variable 1). A bond 
(straight line) between the corners i,j means f j ;  no bond between i and j 
corresponds just to the factor 1 in the integrand. Mayer graphs are 
characterized by the restriction that they are doubly connected, i.e., they do 
not have an articulation point. (~) In case of an articulation point, the 
cluster integrals would be equivalent to a product of Mayer graphs. Figure 
1 shows the Mayer graphs up to n = 5 together with their designation. (3'9) 
The notation (m)~ means that the Mayer graph has n corners, m being the 
graph number 2 due to Ref. 3. The numbering of the corners is irrelevant; 

(1) z (1) 3 (1)u (2)~. {3)u (1) s (2)~; 

(3) s (4) 5 (5)s- (6} s (7)s (8)s (9)~; (10}~; 

Fig. l, The Mayer graphs up to 5 corners. 

2 The value of a Mayer graph may be positive or negative now. Hoover and DeRocco (3) took 
always the absoIute value for D-dimensional parallel hard cubes, 



536 Kratky 

i.e., graphs which differ only in the numbering of corners will be identified 
in the following. 

For n = 5, a comparison of several designations of the Mayer clusters 
has been given. O) Unfortunately, there has been a misprint in the second 
column of Table I of that paper. The correct succession of numbers should 
be 1,2, 3, 4, 5, 6, 8, 7, 9, 10. This means that the designation of Mayer clusters 
has been analogous to the present paper, except for an interchange of the 
numbers (7)5 and (8)5. 

The virial coefficients up to B, are 

B 2 = - �89 (7a) 

B3 = - �89 (7b) 

B4 = - ~ {3(l)4 + 6(2)4 + (3)4} (7c) 

B5 = - ~o { 12(1)5 + 60(2), + 10(3)5 + 10(4)5 + 60(5)5 

+ 30(6)5 + 30(7)5 + 15(8)5 + 10(9), + (10)5 } (7d) 

The number of integrals is a quickly increasing function of n. Moreover, 
experience shows that the contributions of the graphs almost cancel each 
other for several simple potentials if n/> 4. (1'3'9) Therefore, the resulting 
virial coefficients are relatively small and thus inaccurate if the cluster 
values are not known very accurately. There have been early attempts to 
simplify the calculation of virial coefficients. (l~ Using Eq. (2), one can 
evaluate for instance [(6), + (7)5 ] at once (see Fig. 2, ~ being represented by 
a dotted line). This increased the accuracy of B 5 for hard spheres. (10) 

3. REE-HOOVER GRAPHS 

The integrand of QN[ V] is a product of f functions, ef. (3). Using (2) 
yields virial coefficients with cluster integrals where two variables may have 
no bond or a f bond, cf. Fig. 1. Figure 2 shows an example where re- 
introducing a f bond simplifies the calculation of a virial coefficient. Ree 
and Hoover (4'5) found a systematic simplification using f and f b o n d s .  The 

0 0 + 0---0 : 0---0 

Fig. 2. The interpretation of (1 + f j = ~.) in terms of graphs, together with an application. 
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<1>, <1> 3 <1>, <3  > <1 > <3 > < 6 >  < 8 >  <10>  
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Fig. 3. The RH graphs occurring in the graph expansion of B, up to n = 5. 

resulting RH graphs are characterized by the fact that each pair i , j  is 
connected in any case, but the bond may be either f or f A RH graph is 
generated by inserting a f bond between every pair i , j  which is not 
connected in the corresponding Mayer graph. Thus the number of RH 
clusters and Mayer clusters is the same for any n. The RH graph corre- 
sponding to the Mayer graph (m), may be called ( m ) , ;  see Fig. 3. Using 
Eq. (2), every RH graph may be written as a sum of Mayer graphs and vice 
versa. If this is done for the known Mayer graph representation of B., it 
follows for B 2 to B s that 

B2 = - �89 (8a) 

B3 = - �89 3 (8b) 

B4 = __ / ( 3 ( 1 ) 4  __ 2(3)4) (8c) 

B5 = - ~0 ( 12(1)5 + 10(3)5 - 60(6)5 + 45(8)5 - 6(10)5} (8d) 

This means for B 4 and B 5 a simplification compared with (7). Not all of the 
RH graphs have a coefficient v s 0 and do really occur in the RH graph 
expansion of B,7. The occurring RH clusters up to n = 5 are shown in Fig. 
3. Using RH clusters is even more efficient (4'5~ for B 6 and B 7. 

Now we turn to the hard-sphere potential in D dimensions (D = 1,2, 
3). If the hard spheres have the diameter ~r, it follows from (2) that 

f j  = O(rij - o) >1 O, f j  = - |  - r~) < 0 (9) 

where 19 is the Heavyside step function. Thus, the sign of the value of any 
Mayer or RH cluster integral is given by the number of f functions. If the 
graph has an even (odd)number o f f  functions, the value is >/0 (<  0). The 
combination of f and f bonds in RH clusters results in small absolute 
values. For example, (10)5 = (10)5 has the smallest absolute value of all 
Mayer clusters, but the largest one of all RH clusters (D = 1, 2, 3). Some of 
the RH graphs have zero value for hard-core potentials (4,s~ which increases 
the accuracy of B, further. From Eq. (9) follows a simple interpretation of 
the graphs shown in Fig. 4. I(1,2 . . . . .  k) is the volume of intersection of k 
overlapping D-dimensional spheres of radius m (9'1 l) I(1) is just the volume 
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1 ~ 2 1 2 3  1 2 3 ~ .  1 2 3 / . 5  

- I (1 )  I (1,2) - I (1,2,3)  I(1,2,3.~) - I{1,2,3,/ . ,5} 

Fig. 4. The interpretation of several graphs in terms 
of intersections of overlapping spheres. 

of one sphere. For instance, (3)4 = (3)4 can be written as 

(3>4=f f f dr2dr3dr4flzf,3f,4f23A4f34 

= -ffdr2dr~I(1,2,3)ftzf13f23=fr2<os 
r23 < a 

(lo) 

Expressing Mayer or R H  cluster integrals in terms of overlaps made it 
possible to increase the accuracy of virial coefficients of hard disks and 
spheres. (9'12J3) The case D = 1 (hard rods) is already known exactly. (3'4JI) 
The problem of overlapping disks has been solved completely; the three- 
dimensional case can be solved in an analogous way. (11A4) 

4, THE FORMALISM OF LESK 

A completely different way of representing virial coefficients for D- 
dimensional hard spheres is due to Lesk. (15) Since the paper contains a few 
errors, a short corrected version shall be given now. From (3) and (9) it 

follows that 

l<i<j<<.N 
(lla) 

( N 1 x I I  e(r,,.-~,) d,.+, I I  e(,k, .+,-, ,)  / 
l<i<j<N k = l  j 

=s fJr,..-drN{ II O ( r i j - e ) V , ~ ( 1  . . . . .  N)} 
l<i<j<N 

(lib) 
Va(1 . . . . .  N)  is the accessible volume, i.e., the volume accessible to an- 
other particle in the presence of N particles at the positions rt . . . . .  r u. 
Va(1 . . . . .  N) may be written (11) in terms of intersections of spheres with 
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radius a, cf. Fig. 4: 
N 

V~(1 . . . . .  N ) =  V -  ~ l ( i ) +  ~ I(i , j)  
i l l  l < ~ i < j < N  

- ~ ] ~  I ( i , j , k )+ . . .  (12a) 
t < < i < j < k ~ N  

Va(l,2 ) = V -  2I(1) + I(1,2) (12b) 

V~(1,2,3) - V -  31(1) + I(1,2)  + I(1,3)  + I ( 2 , 3 ) -  1(1,2,3) (12c) 

Since the volume of each sphere is the same, it follows that ~I(i)  = NI(1) 
for any configuration. From (1 lb) it follows that 

N V odr2Z(1,2)Qtv_2[ Va(1,2)] 

f f drzdr31(l,2,3)Qu_3[V~(1,2,3)] + . - .  
r,j~> o (13) 

I < i < j < 3  

To obtain (13), the same simplifications have been used as to get (4), i.e., 
symmetry arguments (change of variables) and the neglect of surface 
effects. If N is high, it follows that V >> I(l).  Thus, it seems to be justified 
that QN_~[V~(1,..., k)] can be substituted by QN-k[V]; compare Eqs. 
(12). This yields 

QN+t[ V ] = { V -  NI(1)}QN [ V ] +  v { ( N ) Q N _ 2 [  V]f,2~>odr21(,,2) 

- (N)QN_,[ v] f f dr2dr, l(1,2,3)+ .. .} (14) 
rO->o 

This is a recursion relation for QN[ V]. To solve it, we assume that QN[ V] is 
only a function of V (the measure of the volume) and not of the shape of 
the volume. Then, from (14) Qu[V] can be determined as a double power 
series in N and V. Knowing QN[V], it is possible to calculate the virial 
coefficients, cf. Eqs. (4) and (5). If this is done, it turns out that B 2 and B 3 
are given correctly for hard disks and spheres, but that B 4 is wrong. 
Therefore, we have to go further than Lesk and start again with (13). It is 
possible  to solve (13) directly without  substi tut ing QN_k[V] for 
QN_k[Va(1 . . . . .  k)]. Again it is necessary to assume that QN[V] is not a 
function of the shape of the volume (neglect of surface effects). Then, the 
structure of the recursion relation (13) induces that QN[V] can be repre- 
sented in the following way: 

N 

Qjv[ V] = V N ~, Gm(N)V -m= V u ~, Gm(N)V -m (15) 
m ~  --CO m ~  0 
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The coefficients Gm(N ) will be specified below. The equality of the two 
sums corresponds to the fact that GIn(N) = 0 if m > N or m < 0. The ideal 
gas (f,j = 0) yields QN[V] = VN; see (3). Thus Go(N) = 1 for 'any N, the 
other Gm(N ) vanish for the ideal gas. Combining (13) and (15) yields 

Gm(N + 1 )=  GIn(N)- NI(1)Gm_,(N ) 

N m-2 _ 

• I - -2 I (1 )  + I (1 ,2) ]  h 

- ( N ) f f a r 2 d r 3 I ( l , 2 , 3 ) ~ 3 (  N -  3)Cm_h_3(/- 3) 
h=O h 

ro >~ o 

• [ - 3 1 ( 1 ) +  I ( 1 , 2 ) +  I ( 1 , 3 ) +  1 ( 2 , 3 ) -  I (1 ,2 ,3)]  h 

+ - . -  (16) 

For any m, (16) contains only a finite number of terms. For instance, 

Co(N + l) - Co(N) = 0 (17a) 
Gt(N + 1 ) -  G,(N) = -NI(I)Go(N ) (17b) 

G2(N + 1) - Gz(N ) = -NI(I)G,(N) + 2 ,:>o 

(17c) 

2 12~> 

_ ( N ) f  fdr2dr31(1 ,2 ,3)Go(N_3)+. . .  (17d) 

rq>o 

F ~ ( N -  2 ) [ - 2 I ( 1 )  + I(1,2)]Go(N- 2) + G , ( N -  2) 

Thus,  G,,(N+ l ) - G m ( N  ) is expressed as a funct ion of Go(N ) , 
. . . .  Cm_I(N). From (3) it follows that Q~[V] = fdr 1 = V for any poten- 

tial, i.e., C0(1 ) = 1 and G,,(1)= 0, m > 0. C0(1)= 1 gives together with 
(17a) the result Go(N)= 1 for any N. This is the starting point of the 
recursion. Furthermore, it is easy to obtain G,, (N) from the knowledge of 
Gm(N + 1 ) -  GIn(N): 

{ t l I m > O : { C ~ ( 1 ) = O } ~  G , , ( N ) =  2 ~Gm(N'+ I ) - G , , ( N ' ) .  ' N >  I) 
N ' = I  

(18) 
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GIn(N) comes out as a power series in N (highest power: 2m). Therefore, 
QN[V] of D-dimensional hard spheres is represented at last by a double 
power series in N and V, the coefficients--apart from trivial numbers--  
being cluster integrals of the form CI(k, l): 

CI(k,l)=~:>o . . .  f dr2. . .drk(-1)kI(1,2, . . . ,k)  
i ]  

l<i<j<Ic 

• I-I ( -  1)'~qI(nl . . . . .  nq) 
( 1 -  k - ~) 

(19) 

1 4 n ~ < . . .  <nq<k, q > l  

or products of such integrals. ( l -  k -  1) beneath the product sign means 
that there are ( I - k -  1) factors of the type l(nl . . . .  , nq). The same 
CI(k, 1) also occur in the virial coefficients; cf. (4), (5). For D-dimensional 
hard spheres, it is easy to know whether CI(k,I) vanishes or not. For 
instance, it is not possible that more than five disks have an intersection 
4=0 with r,j >/ o for all pairs i,j.(11,15) Thus, CI(k,l)=O if and only if 
k > 5 .  The corresponding numbers (II) f o r  rods (D = 1) and spheres 
(D = 3) are 2 and 12, respectively. This means for instance that for hard 
rods the expansion (16) stops with the term ( N ) f . . .  since the subsequent 
terms consist only of integrals of the type CI(k, l), k > 2, which are all zero. 
Equivalently, (16) stops with - ( N ) f . . .  for disks and with + (~)f  �9 �9 �9 for 
spheres. 

Lesk tried to develop virial coefficients for hard disks and spheres. If 
one checks the derivation of his (corrected) results, one can see that it is a 
general formalism. If one uses f and f, Eq. (2), instead of O functions, Eq. 
(9), all steps remain valid. One has to insert the graphs shown in Fig. 4 
instead of the hard-sphere interpretation (-1)qI(1,2 . . . . .  q). The restric- 

k(N lion r e /> o, 1 < i < j  <-< k, in the term ( - 1 )  k) f ' ' "  of (16) turns into]" 
bonds between each pair of the variables 1 , 2 , . . . ,  k. Thus the Lesk 
formalism gives at last a general graph expansion of virial coefficients 
which is different from the Mayer and RH graph expansions. The general 
graph theoretical description of CI(k, l) is as follows: CI(k, l) has l corners 
(l >1 2), one of them (e.g., corner 1) being a white circle, the others are 
black circles. If l = 2, then k = 1. If l > 2, then 1 < k < l. Each pair of the 
corners 1 . . . . .  k is connected by a f b o n d .  The remaining l - k corners are 
not connected among themselves, but are connected by f bonds with at 
least two (one if k = 1) corners out of the first k corners. At least one of the 
corners k + 1 . . . . .  l is connected with all corners 1 , 2 , . . . ,  k. Such a 
graph will be called an overlap graph of the first kind. "First kind" refers to 
the last restriction mentioned, "overlap graph" refers to the simple interpre- 
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tation in the case of overlapping spheres, Eq. (19). Explicit results of this 
graph expansion will be given in the next section. 

5. EXPLICIT RESULTS 

The (products of) overlap graphs of the first kind which contribute to 
B n, n < 4, are exhibited in Fig. 5. They are of the type C I ( k ,  n), k <~ n - 1, 
or products of C I ( k i , n  i) with k i < n i - 12 ~ ( n  i - 1) = n - 1. Since all pairs 
of corners 1 , . . . ,  k are connected by f bonds (dotted lines), a simplified 
drawing (the points 1 . . . .  , k lying on one dotted line) is possible and will 
be used in the following. The cluster integrals C I ( k ,  n)  are denoted [m] n if 
(m)n is the Mayer graphs with n corners which is generated by replacing all 
f bonds in C I ( k , n )  by f bonds. The designation of products, e.g., [1122 
= [1121112, is analogous. 

Graph [2]4 is not obtained using the recursion relation (14) instead of 
(16). Thus, (14) yields an incorrect 9 4 a s  mentioned above. Relation (16), 
however, yields all overlap graphs of the first kind and leads to a correct 
fourth virial coefficient. The number dependence B4(N ) is also given 
correctly, see below. All (products of) overlap clusters with n corners really 
contribute to B n. 

The expansion of the graphs shown in Fig. 5 in terms of Mayer graphs 
yields: 

n = 2 :  

n = 3 :  

n = 4 :  

[112 = (1)2 (20) 

[113 = (1)3 (21a) 

[1122=(1)22 (21b) 

[2]4 = (1)4 -I- (2)4 (22a) 

[3]4 = 3(2)4 + (3)4 + 3(1)2(1)3 + (1)32 (22b) 

[1 ]21113 = (1)2(1)3 + (1)32 (22c) 

[ l  ]32 = (I)32. (22d) 

2' 

[1], [1], [11~ [21~, [3l~. [11211], [I]32 

Fig. 5. Overlap graphs of the first kind (and their products) which contribute to B 2, B3, 
and B 4. 
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Table I. Cluster Values of D-Dimensional Parallel Hard Cubes. The 
- (Products of) Overlap Graphs up to n = 4 are Exhibited 

Rods Squares Cubes 

(Products of) 3 • 12 • 432 • 
n Overlap Graphs v a l u e / B ~ -  I value/B~'-1  va lue /B~' -  J 

[l]2 - 6  - 24 -864 

[113 3 21 999 
[1]~ 12 48 1 728 

[2]4 2 10 338 
[3]4 0 - -  8 - -  7 0 8  

[1121113 - 6  - 4 2  - 1 998 
[1] 3 - 24 - 96 - 3 456 

The  explicit values for these graphs  in the case of D-dimens iona l  parallel 
ha rd  cubes are shown in Table  I. They  are based on the Mayer  graph 
values which are known analyt ical ly up to n - - 7 .  O) N o w  we turn to the 
explicit representat ion of B~(N), n -<< 4, via overlap graphs  of the first kind. 
To  do this, we start  with Gm(N ), Eq. (15). Combina t ion  of (17) and  (18) 
yields 

Go(N ) = 1 (23a) 

GI(N ) = �89 [ I I 2 ( N  2 -  N )  (238) 

G2(N ) =-~ [1 ]3(U 3 - 3 N  2 + 2 N )  

+ ~ [ 1 ] ~ ( 3 N  4 -  10U 3 + 9 N  2 -  2 N )  (23c) 

G3(N ) = 1 [214(N 4 _  6 N  3 + l l U  2 _ 6 N )  

+ ~ 4 1 3 1 4 ( N  4 - 6 N 3 +  l l N  z - 6 u )  

+ ~ 4 [ 1 1 2 [ 1 1 3 ( 2 N  5 -  l I N  4 + 1 6 N  3 - N  2 - 6 N )  

+ ~8 [1132(N6-  7 N  5 + 17N 4 -  17N 3 + 6 N  z) (23d) 

Compar i son  of the expansion of Qu[V] in powers  of V, Eq. (15), with the 
virial expansion,  Eq. (5a), results in relations between the G,,,(N) and the 
B,,(N), cf. (4): 

B2(N ) = - Gl(N) /N 2 (24a) 

B3(N ) = - { G2(N ) - GZI(N))/N 3 (248) 

B4(N ) = - ( G 3 ( N )  - 3GI(N)G2(N ) + G~(N)}/N 4 (24c) 
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Thus, from the known GIn(N), Eqs. (23), it follows that 

B 2-- - �89 [112, B2(N ) = (1 - w)B 2 (25a) 

B3=  - � 8 9  , B 3 ( N ) = ( 1 - w ) ( 1 - 2 w ) B 3 + 2 w ( 1 - w ) B  ~ (25b) 

B 4 ~ - ~  - -  -~ (31214 + [314-- 3[112[113 + 2[1]~} 

B4(N ) -- (1 - w)(l - 2w)(1 - 3w)B 4 + 9w(1 - w)(1 - 2w)BzB 3 

- 4w(1 - w)(1 - 3w)B32 (25c) 

w being ( l / N ) .  Developing the overlap graphs of the first kind in Mayer 
graphs, Eqs. (20)-(22), confirms the correct representation (3) of B 2, B 3, and 
B 4. The Bn(N ) are also given correctly (6) up to n = 4. The (products of) 
overlap graphs of the first kind yielding B 5 are shown in Fig. 6. The graph 
[5]5 is not an overlap graph of the first kind and will be treated later. As to 
[7]5, the first of three equivalent representations (Fig. 6) is chosen from now 
on. G4(N ) and Bs(N ) can be evaluated in the same manner as above, Eqs. 
(23)-(25). The result is that Bs(N ) does not come out correctly: 

B L e s k ( N )  --  B ~ x a c t ( u )  = 1 ( 1  - w)(1 - 2w)(1 - 3w)(1 - 4w) 

• (2(1)5 + 6(2)5 + 4(5)5 + (6)5 

+ (7)5 + 2(1)22(1)3 + 2(1)23} (26) 

Thus, even the corrected and improved Lesk formalism fails, and it fails for 
an interesting reason: The only approximation used was the assumption 
that QN[V] is only a function of V and not of the shape of the volume; see 
Section 4. This is a problem closely related to the volume-dependent 
correction of virial coefficients (v) mentioned in Section 1. However, this 

[/*]5 [71  [91 s [10] s 

45 -.-4.-- 
[1],[3],, [1][[1], [1][ [51,  

Fig. 6. Overlap graphs and their products contributing to B 5. 
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latter correction vanishes in the thermodynamic limit, while the discrep- 
ancy between B5 Lesk and B~ xa~t does not. Even if V goes to infinity, the 
shape of the volume excluded, e.g., by particles 1, 2, and 3 remains a 
function of the actual locations of these particles. It is well conceivable that 
the differences between B Lesk and Bn exact will throw more light on the 
volume dependence of virial coefficients which is not yet well known. 

The fact that B Lesk is the first incorrect virial coefficient can be ex- 
plained for hard spheres as follows: The shape of the volume common 
to two intersecting spheres (radius o) is determined by its measure 
I V -  Va(1,2)] = [2I(1) - 1(1,2)]. On the other hand, it is possible to locate 
three spheres in different ways yielding the same volume [ V -  Va(1,2, 3)]. 
Thus, neglecting the shapes of volumes starts to be crucial with the term 
- (~)Vf . . .  in Eq. (13), which contains QN_3[Vq(1,2,3)]. However, the 
first approximation to QN_3[Vo(1,2,3)] is Q~v[V]. Thus, the coefficients 
GIn(N) up to G3(N), Eqs. (16) and (17), are not affected by the above- 
mentioned neglect. Equations (24) show that this induces B~ ~sk to be 
correct up to n = 4. This is no longer the case from B~ esk on. 

, 

The result of Section 5 concerning B 5 seems to be 
However, it is possible to obtain the correct fifth virial 
generalizing the definition of overlap graphs. B 6 and B 7 will 
in the next section. 

First, we analyze the discrepancy between B~ ~sk and 
That B5 L~k is not correct can be seen from a simple fact (cf. 

THE CORRECT OVERLAP GRAPH REPRESENTATION OF B 5 

discouraging. 
coefficient by 
be considered 

B~ xact further. 
Fig. 6): None 

of the four overlap graphs of the first kind [4]5, [7] 5 , [9] 5 , and [1015 yield (1)5 
if they are expanded in Mayer graphs. Since (1)5 occurs in B 5, Eq. (7d), 
B5 Lesk cannot be correct except for the hypothetical existence of a relation 
among the (m)5 valid for any potential. 

The restriction which specified the "first kind" of an overlap graph was 
the requirement that at least one corner out of k + 1 . . . . .  n is connected 
with all corners 1 , . . . ,  k by f bonds. In the following, we define a 
(generalized) overlap graph by replacing the above restriction by a weaker 
one. It is now only required that each of the corners 1 . . . . .  k has a f  bond 
to one or more of the corners k + I , . . . ,  n. A check of the overlap graphs 
up to n = 4 yields that they are automatically of first kind. For n = 5, 
however, there exists one overlap graph which is not of first kind, see Fig. 6. 
It is called [5]5 using the same numbering rule as for overlap graphs of the 
first kind, Section 5. Expansion in Mayer graphs yields 

[5 I s=  (I)5+ 2(2)s+ (5)s+ (1)~+ 2(1)~(1)3+ (1)4 (27) 
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Table II. Cluster Values of D-Dimensional 
Hard Cubes, n = 5 

Rods Squares Cubes 

(Products of) 6 • 1152 • 221 184 • 

Overlap Graphs va l ue / B  4 v a l u e / B  4 va lue /B  4 

[4]5 3 558 77 868 
[5]s 3 2 735 1 034 319 

[7]5 0 - 359 - 119 619 
[9]5 0 120 31 440 
[1015 0 102 160 878 

[1121214 - 8 - 1 920 - 346 112 
[1121314 0 1 534 724 992 

[1] 2 6 3 528 1 182 816 

[1]~[113 24 8 064 2 045 952 

[1] 4 96 18 432 3 538 944 

Thus, (1)5 is occurring now. In fact, the difference between B Lesk and 
B~ xact, Eq. (26), can be represented in overlap graphs when including [5]5: 

BsLe~k e exact 7]5 121214 2[1]~[113 } (28) - _ ,  E - [ a  - 

By the way, the lack of [5]5 in the Lesk formalism does not change Bs(N ) as 
long as N < 4, see Eq. (26). This is consistent with the fact that clusters 
with five variables do not come in as long as there are not more than four 
particles. The correct B 5 expressed in overlap graphs is 

B5 = - ~ ( 6 1 4 1 5  + 12E515 + 181715 + 4[915 +[1015 - 1811121214 

-411121314-1511]~  + 12[1122[113 - 6[1]~} (29) 
The analytical values of the (products of) overlap clusters contributing to 
B s are exhibited in Table II for D-dimensional parallel hard cubes. (3) 
Furthermore, the numerical values of all (products of) overlap clusters up 
to n = 5 are shown in Table III for D-dimensional hard cubes and 
spheres. (3'9'1a) To facilitate the comparison, all values are exhibited in the 
units (2B2) " -  i in Table III. Thus, [115-t has the absolute value 1 for all n 
and potentials. All numbers are exact within the given digits apart from 
[1015, spheres, which has an uncertainty of ___0.0000025. In most cases, the 
small difference between the results for spheres and cubes of the same 
dimension is remarkable. For rods, the clusters with zero value are of the 
type CI(k, l), k > 2; compare (19). These graphs have small absolute values 
for the other potentials included in Table III. 
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Table IV. 

Cluster 

Hard-Disk Values o! the Overlap Clusters Contributing to B~ 
i 

Value/B~'- i Cluster Value/B 4 

[112 - 2 [4]5 0.4197 6985 76 
[113 1.6539 8686 63 [5]5 2.0836 1785 3(2) a 
[2]4 0.7630 6855 23 [7]5 - 0.2153 3487 (2) 
[3]4 - 0.4709 8023 05 [9]5 0.0668 8661 6(2) 

[ 1015 0.0208 59(1 ) 
i i 

aThe number in parentheses denotes the uncertainty of the last digit. 

The overlap graph representation makes it possible to determine for 
instance B 5 (hard disks) with an improved accuracy. The five products 
occurring in (29) are known analytically since this is the case for all Mayer 
clusters (16) up to n = 4. [4]5 is also known analytically since [4]5 = (3)5 + 
(4)5, the values of both Mayer graphs being known. O) Using simplifications 
analogous to Ref. 9, [5]5, [7]5, and [9]5 can be evaluated directly by at most 
threefold numerical integration, the integrand being for instance I2(1,2, 3) 
for [9]5. [1015 is a fivefold integral with the integrand I(1,2, 3, 4). However, a 
more accurate estimate follows from the fact (4) that (3)5 = 0 for hard disks, 
cf. Fig. 3. Inserting the best values for the Mayer graphs (91 yields [1015. 
Table IV shows the resulting values of the overlap clusters contributing to 
B 5 for hard disks. It follows that Bs/B 4 is 0.33355604 + 0.00000004. This 
may be compared with the best value up to now, (9) 0.3335561, the last digit 
being uncertain. The improvement in accuracy comes from the direct 
calculation of [5]5, [7]5, and [9]5. The main error of B 5 is due to [1015. 

7. D I S C U S S I O N  

We will compare now several properties of Mayer graphs Si(n), RH 
graphs ~(n) ,  and (products of) overlap graphs with n corners. The proper- 
ties of overlap clusters have only been confirmed up to n = 5 so far. As for 
9 6 and B7, see below. 

All Mayer and overlap graphs with n corners contribute to B n. This is 
not the case for the Sj(n). No products of clusters occur in the graph 
expansion of Bn: This is true for Si(n ) and ~(n) ,  but not for the overlap 
clusters where all possible products occur. All three graph expansions can 
represent the virial coefficients. The number of Si(n ) and ~ (n )  is the same, 
the number of overlap clusters is smaller for n > 3. 

The coefficient of a Mayer graph in the expansion of B n follows 
directly from the symmetry (~'3) of the graph. On the other hand, the 
coefficients of ~ (n )  have to be evaluated indirectly (4'5) from the known 
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coefficients of Si(n ) and the transformation Si(n)~ Sj(n). Using a simple 
criterion, (1~ however, one can determine most of the R H  clusters that are 
not occurring in B n, i.e., with a coefficient = 0. As to overlap clusters, the 
direct way from QN[V] to the B,, via the Lesk formalism is no longer valid 
from B 5 on. Therefore, one has to choose also the indirect way for overlap 
graphs as in the case of ~(n) .  The expansion of overlap graphs in terms of 
Mayer graphs up to n = 4 is exhibited in Eqs. (20) to (22); the transforma- 
tion tables up to n = 6 are given in Ref. l 7. 

Table V shows the number  of Mayer, RH, and (products of) overlap 
graphs with n corners up to n = 7. It is by no means evident that the 
relatively small number  of overlap clusters makes it possible to express B 6 

and B 7 properly. However, we will formulate the following conjecture: It is 
possible to express B n for any n in terms of overlap graphs, and also the 
other above-mentioned properties of overlap graphs are valid for any n. 
This conjecture was the starting point to determine the coefficients of the 
overlap graphs for B 6 and B 7 in the described indirect way. This will be 
treated in another publication; the main result is: The above conjecture 
turns out to be true for n = 6 and 7. For n < 5, it is known to be valid from 
the present paper. Table V shows that "the graph expansion in terms of 
overlap graphs is the simplest one. The occurring products do not matter  
since they are already known from the knowledge of lower virial coeffi- 
cients. Apart  from the number, the structure of the overlap graphs is 
advantageous. It is easy to write down all overlap graphs up to n = 7 
without much meditation, which would be impossible for Mayer or R H  
graphs. For example, Fig. 7 shows all overlap graphs of the first kind 
C1(3,n), cf. Eq. (19), up to n = 7. Finally, we will discuss the merits of the 
overlap graph expansion for hard disks and spheres. The smaller number  of 
graphs helps to improve the accuracy of B n. In R H  graphs, each pair of 
corners is connected by a f o r f b o n d  which makes Monte Carlo integration 
necessary for any ~ ( n )  with n >/5. (4'5~ The simpler structure of overlap 

Table V. Comparison of the Number of Overlap, Mayer, and RH Graphs 
Occurring in B,; 

Overlap Products of Mayer RH 
n graphs overlap graphs Total graphs graphs 

2 1 0 1 1 1 
3 1 1 2 1 1 
4 2 2 4 3 2 
5 5 5 10 10 5 
6 14 12 26 56 23 
7 44 35 79 468 171 
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[31,, [7ls [91, [281, [291, [/-.0], 

Kratky 

[/-.9] 6 

[1581., [1591.,. [1621~ [2521~, [25z,1~ [335]~, [3931r 

Fig. 7. Overlap graphs of the first kind C1(3, n) up to n = 7; cf. Eq. (19). 

graphs makes it possible to interpret any of them as the integral over 
(products of) intersections. The graphs shown in Fig. 7 contain intersections 
of at most three disks or spheres. These clusters can be evaluated by 
threefold numerical integration. Since the integral regions (11) of variable 3 
are only determined by I(1,2,3), all integrals shown in Fig. 7 can be 
calculated at once. The validity of the corresponding computer program 
can easily be checked since the first graph, [7]5, is known accurately; see 
Table IV. Furthermore, it is of advantage that the most complicated 
overlap graphs have small absolute values. For instance, all graphs CI(3, n) 
shown in Fig. 7 are of zero value for hard rods since k > 2, cf. Eq. (19). 
Correspondingly, all CI(k,n) with k > 5 vanish for hard disks, and all 
CI(5,n) which necessitate Monte Carlo integration are very small. Thus, 
the overlap graph expansion seems to be promising not only from a general 
point of view, but also for specific potentials. 
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